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Abstract

N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical
initiator in alcohol/water solution.  The resulting gels were thermally-responsive in water,
undergoing an approximate fivefold reversible volume shrinkage between room temperature and
ca. 50 C.  Tensile testing showed that the stress-strain behavior was qualitatively different in the
collapsed state above the temperature-induced transition.  At the higher temperature, gels were
stiffer, more ductile, and showed greater time dependence.  Implications for the design of gel
actuators are briefly discussed.

Introduction

Stimulus-responsive hydrogels are of interest for a variety of biomedical applications [1], as
microfluidic valves [2], and as actuators [3].  In spite of this widespread interest and the fact that
gels can be rather fragile, measurements of strength and toughness of these materials are
relatively uncommon.  This memorandum describes the effect of a temperature-induced
transition on the mechanical properties of a responsive poly N-vinyl caprolactam (PVCL) gel.

Experimental

N-vinyl caprolactam (Aldrich) was dissolved at 50% concentration in 80:20 (vol.) ethanol-water
solution along with 1.4 mole % ethylene glycol dimethacrylate (crosslinker) and 0.5 mol % 2,2
azobis isobutyronitrile (initiator).  Nitrogen was bubbled gently through the solution for 20
minutes before it was transferred to a mold consisting of two soda-lime glass plates separated by
a silicone rubber gasket.  Polymerization was carried out in an oven at 60 C for 4 hours.  Ethanol,
excess monomer and sol fraction were removed by repeatedly swelling the gel in fresh deionized
water (cycling the temperature between 22 C and 55 C.)  Purified gel sheets were approximately
1 mm thick at room temperature.

Samples of gel were dried to constant weight to give the mass fraction of polymer in the gel at
room temperature.  Temperature response of the gel was determined by blotting and weighing a
small square of gel, equilibrating it at the next higher temperature, and repeating.  Mass fractions
were converted to volume fractions where required by assuming additivity of volumes and a
polymer density of ρ=1.23 g/cm3  [4].
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For the mechanical testing, tapered specimens (scaled-down versions of ASTM D638 Type 5
dumbbells) were cut by hand with a razor blade with the aid of a stainless steel template.
Thickness and width of each specimen were measured at room temperature using a microscope
with a vernier stage and crosshair eyepiece.  Dimensions are averages of 3 locations in the gauge
section.  Length of the straight-sided portion of the specimen was 17.75 mm at room
temperature.  Specimens were brought to the test temperature in a water bath, affixed to
polyester film gripping tabs with cyanoacrylate adhesive and submerged during testing in a large
reservoir of water at the proper temperature.  Crosshead speed was 0.5 cm/min;  elongation was
approximated as crosshead displacement divided by the original gauge length.

Results and Discussion

Swelling characterization
The equilibrium degree of swelling at room temperature corresponds to a polymer volume
fraction φ2= 0.075.  This value can be used in the Flory-Rehner equation [5] to characterize the
degree of cross linking.  In its usual form, the equation reads

V1n[φ2
1/3-φ2/2]+ln(1-φ2)+φ2+χφ2

2=0 (1)

In which V1 is the solvent molar volume, n is the concentration of elastic chains, φ2 is the
polymer volume fraction at swelling equilibrium, and χ is the polymer-solvent interaction
parameter.  There are, of course, approximations inherent in the lattice-based theory itself.  In
addition, there are two minor problems in applying equation 1 to our gels.  The first has to do
with the way our material was made, and the second is uncertainty in the parameter χ that
appears in the equation.  Each of these will be discussed in turn.

In the Flory-Rehner derivation, the free energy of swelling consists of two terms:  one due to
dilution of the network chains, and one due to elastic stretching.  It is reasonable to assume affine
swelling [6], i.e., that the chain end-to-end distances stretch in proportion to changes in the
specimen macroscopic dimensions.  For a network prepared in solution, however, the reference
state (where the chains are relaxed, i.e., unstretched) should be that at which crosslinking took
place, not the dry state [7].  This has the effect of replacing the term in brackets in equation 1
with the expression [(v0/v)1/3-(v0/2v)], where v is the equilibrium swollen volume and v0 is the
volume at synthesis.

With regard to the χ parameter, in the context of Flory-Huggins theory

χ=(1/2)-A2V1/V2
2 (2)

where A2 is the second virial coefficient and V2 is the solute specific volume.  Thus in good
solvents, where A2>0, we expect χ<0.5.  The theta condition, i.e., incipient precipitation at
infinite molecular weight, corresponds to χ=0.5.  For PVCL in water at room temperature, small
positive virial coefficients are reported [8, 9].  Furthermore, the Mark-Houwink expression [10]
for the intrinsic viscosity [η]=kMa yields a=0.69, which would be interpreted to mean that water
is a moderately good solvent.  Other authors, however, back-calculate χ=0.52 [4], corresponding
to a rather poor solvent, and even higher values of χ have appeared [11].
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It turns out that equation 1 is quite sensitive to the choice of χ in this range.  Published virial
coefficients correspond to 0.49<χ<0.50 via equation 2, so we choose χ=0.5.  We can then
calculate the approximate chain concentration, n, or equivalently, divide the mass concentration
by the chain concentration to get the average molecular weight of a network chain, Mc.  From
stoichiometry, complete reaction would have resulted in Mc~5x103 g/mole (assuming the added
cross linker formed tetrafunctional junctions.)  The result calculated from the swelling
experiment is Mc�=�1.1x104 g/mol,  which is certainly the right order of magnitude.  That it is
higher than the stoichiometric prediction should not be too surprising.  Incomplete reaction or
failure to incorporate all the crosslinker (due to monomer reactivity ratios) would raise this
number.  Network imperfections such as loops (likely with solution cross linking) would also
decrease the effective chain concentration (and therefore increase Mc).

Figure 1 illustrates how the mass of our PVCL gel at swelling equilibrium changes as a function
of temperature.  As the temperature is raised, the gel expels water and shrinks; the midpoint of
the shrinkage transition corresponds rather closely to the lower critical solution temperature [9]
of high molecular weight PVCL (approximately 31.5 C).  Other workers have documented this
shrinkage behavior [4,12].  At 47 C, in the shrunken state, the volume fraction of polymer was
0.372.  It is commonly observed that the polymer concentration in the shrunken state of
responsive gels is independent of the degree of cross linking [4,13];  thus the water content of the
shrunken gel is determined by the polymer phase behavior, not by the chain elasticity
considerations that led to equation 1.

Small-strain Moduli
Using a relationship from rubber elasticity theory, the engineering stress, σ, is given as:

σ= NRT (r2/r02)(λ-1/λ2) (3)

where N is the number density of elastic chains in the gel, R is the gas constant, T is the absolute
temperature, and λ is the extension ratio [5].  The “front factor” (r2/r02) reflects the increase in
chain dimensions in the swollen state relative to those at the synthesis concentration [7].
Assuming again that the chain end-to-end distances r scale with the sample dimensions,
(r2/r02)=( φ0/ φ)2/3, where φ0 is the polymer volume fraction at which cross-linking took place and
φ is the volume fraction at which tensile testing is carried out.  Representative data obtained at
22�C are plotted as load against (λ-1/λ2) in Figure 2.  A total of six specimens gave an average
initial slope corresponding to a modulus of 10.3±2.4 kPa (average and standard deviation), which
translates via equation 3 to an elastic strand molecular weight of Mc=7.4x104 g/mole.

At 47.5 C, the load-displacement behavior is qualitatively different (Figure 3).  The initial
(tangent) modulus is quite high, but the gel seems to exhibit a yield point at about 10% strain.
There is some scatter among specimens, in part because of the uncertainty in the initial
displacement, but the effect is reproducible and the load at yield (approximately 4g) is well
outside the noise level of the measurement.  Thus at 47.5 C, the material is acting more like a
plasticized polymer than a swollen elastomer.
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Larger strains
Figure 4 shows raw load-displacement data obtained at the two temperatures.  The qualitative
difference in behavior is apparent: at the higher temperature, we see the yield point, and a greater
degree of nonlinearity in the curve.  For the sake of comparison, Table I reports, in addition to
initial tangent moduli, the 100%, 200%, and 300% (secant) moduli at both temperatures (all
based on the initial cross-sectional areas).

Table I
Tensile properties (average and standard deviation)

Engineering moduli, kPa
Temper
-ature,
C

Number
of speci-
mens

E,
(tangent)

E(100) E(200) E(300) Engi-
neering
failure
stress,
kPa

Elonga-
tion at

break, %

22 6 30.1±6.6 35.6±3.9 39.6±3.3 n/a 98±13 239±26
47.5 4 940±220 54.6±8.9 45.6±4.7 47.8±5.8 830±140 500±80

Fracture
The behavior at 22 C suggests brittle fracture; i.e., the load-displacement  relationship is nearly
linear all the way to failure.  Such fracture would be controlled by flaws that initiate cracking.
At 47.5 C, the load-displacement curve is decidedly non-linear, and furthermore, it was observed
that gels did not retract quickly after breaking; i.e., they show a much greater degree of
viscoelasticity than the more highly swollen room temperature gel.  The relatively greater
ductility of the shrunken gel could therefore be the result of greater viscoelastic energy
dissipation retarding crack growth.  It is known that fracture in rubber is both time- and
concentration-dependent [14].

For a network with uniform chain lengths, the maximum network extensibility (failure strain)
would be expected to be controlled by the extensibility of the individual chains that make it up.
The maximum stretch ratio of a random coil relative to the relaxed state is x1/2, where x is the
number of Kuhn segments [6].  The characteristic ratio of PVCL is not readily available, but it
should be close to that of polystyrene, given their similar structures.  Using this approximation,
the average strand length calculated above from rubber elasticity theory would be equivalent to
approximately 50 Kuhn lengths.  The predicted maximum stretch of our network chains would
therefore be (50)1/2~7.

When the tensile test begins, the gel is swollen relative to the synthesis condition, so the chains
are already somewhat extended at both test temperatures.  In Table II we calculate the
cumulative degree of stretch at failure -- that due to both swelling and tensile elongation.  The
shrunken gel comes fairly close to the estimated maximum stretch for random coils.
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Table II
Elongation of Network Chains

Temperature,
C

Polymer
Volume
fraction

φ

Linear Swelling
ratio

(φ/φ0)-1/3

Tensile
elongation ratio

Approximate
Total

(synthesis
condition)

0.47 1 1

22 0.075 2.5 2.4 4.9

47 0.372 1.1 5.0 6.1

Application
Some predictions can be made based on the average behavior summarized above.  For simplicity,
we shall neglect any possible time dependence;  in particular, we ignore the fact that the
equilibrium water content changes in response to the deformation.  Consider a load-bearing
application, for example in an actuator driven by the shrinkage transition.  The tensile stress
would have to be limited to 98 kPa (actually less than this to allow a safety factor) in order not to
exceed the strength of the swollen gel at room temperature.  Reading from the load/elongation
curves, and allowing for the change in unstretched length, shrinkage under this load would
produce a length decrease of ~60%.  We note in passing that this strength and length change are
somewhat lower and higher, respectively, than the corresponding values for natural muscle [15].
The mechanical work done in lifting the weight would be ~103 kJ (per cubic meter of dry
polymer).  This is considerably higher than a value reported for polyvinyl alcohol gels operating
a under compressive load [16].  Other figures of merit sometimes cited for artificial muscles are
power density and efficiency.  The response of even 1-mm gel strips is far too slow to give
muscle-like power, and changing the temperature of large gel actuators is not likely to be
practical.  These factors have led to an emphasis on applications of responsive gels in the forms
of fine fibers and micro-scale devices.

Conclusions

Tensile testing of a responsive gel showed that the stress-strain behavior was qualitatively
different in the collapsed state above the temperature-induced transition.  At the higher
temperature, gels were stiffer, more ductile, and showed greater time dependence.
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Figure 1.  Degree of swelling (gel swollen weight/dry weight) vs. temperature
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